更多>>精华博文推荐
更多>>人气最旺专家

李林

领域:岳塘新闻网

介绍:这主要是因为它能增加大脑中使人愉悦的5-羟色胺物质的含量。...

李质

领域:人民经济网

介绍:我的措施1、不服从组长管理者每次扣3分;2、在厕所玩水者,每次扣3分;3、冲厕所迟到,每次扣3分;4、未打扫着扣3分,并自觉帮助次日的值日生打扫;5、打扫不彻底,被学校扣分者,这一组均扣3分。利来AG旗舰厅,利来AG旗舰厅,利来AG旗舰厅,利来AG旗舰厅,利来AG旗舰厅,利来AG旗舰厅

利来娱乐w66
本站新公告利来AG旗舰厅,利来AG旗舰厅,利来AG旗舰厅,利来AG旗舰厅,利来AG旗舰厅,利来AG旗舰厅
9ta | 2019-01-16 | 阅读(444) | 评论(336)
PAGE第3课时 三角形中的几何计算课后篇巩固探究A组1.在△ABC中,AB=2,BC=5,△ABC的面积为4,则cos∠ABC等于(  )                ±C.-D.±解析由S=AB·BC·sin∠ABC,得4=×2×5sin∠ABC,解得sin∠ABC=,从而cos∠ABC=±.答案B2.某市在“旧城改造”工程中计划在如图所示的一块三角形空地上种植草皮以美化环境.已知这种草皮的价格为a元/m2,则购买这种草皮需要(  )元元解析由已知可求得草皮的面积为S=×20×30sin150°=150(m2),则购买草皮的费用为150a元答案C3.在△ABC中,a,b,c分别为角A,B,C的对边,若2b=a+c,B=30°,△ABC的面积为,则b等于(  )+++3解析由acsin30°=,得ac=6.由余弦定理,得b2=a2+c2-2accos30°=(a+c)2-2ac-3ac=4b2-12-63答案A4.在△ABC中,若AC=3BC,C=π6,S△ABC=3sin2A,则S△ABC=(解析因为AB2=BC2+3BC2-2×BC×3BC×32=BC2,所以A=C=π6,所以S△ABC=3sin2A=答案A5.若△ABC的周长等于20,面积是103,B=60°,则边AC的长是(  )解析在△ABC中,设A,B,C的对边分别为a,b,c,已知B=60°,由题意,得cos60°=a2+c答案C6.已知△ABC的三边分别为a,b,c,且面积S=a2+b2解析在△ABC中,S△ABC=a2而S△ABC=absinC,∴a2+b由余弦定理,得c2=a2+b2-2abcosC,∴cosC=sinC,∴C=45°.答案45°7.已知三角形的面积为,其外接圆面积为π,则这个三角形的三边之积等于     .解析设三角形的外接圆半径为R,则由πR2=π,得R=1.由S=absinC=abc4R=abc答案18.在△ABC中,角A,B,C所对的边分别为a,b,c,求证:ab-b证明由余弦定理的推论得cosB=a2cosA=b2右边=ca=2a2故原式得证.9.如图,在△ABC中,BC=5,AC=4,cos∠CAD=3132,且AD=BD,求△ABC的面积解设CD=x,则AD=BD=5-x.在△CAD中,由余弦定理,得cos∠CAD=42+(5∴CD=1,AD=BD=4.在△CAD中,由正弦定理,得ADsin则sinC=ADCD·1-∴S△ABC=AC·BC·sinC=×4×5×387=154710.导学号04994016若△ABC的三边长分别为a,b,c,面积为S,且S=c2-(a-b)2,a+b=2,求面积S的最大值.解S=c2-(a-b)2=c2-a2-b2+2ab=2ab-(a2+b2-c2).由余弦定理,得a2+b2-c2=2abcosC,∴c2-(a-b)2=2ab(1-cosC),即S=2ab(1-cosC).∵S=absinC,∴sinC=4(1-cosC).又sin2C+cos2C=1,∴17cos2C-32cosC+解得cosC=1517或cosC=1(舍去)∴sinC=817∴S=absinC=417a(2-a)=-417(a-1)2+∵a+b=2,∴0a2,∴当a=1,b=1时,Smax=417B组1.在钝角三角形ABC中,内角A,B,C所对的边分别为a,b,c,已知a=7,c=5,sinC=5314,则△ABC的面积等于(解析在钝角三角形ABC中,∵a=7,c=5,sinC=5314,∴AC,C为锐角,且cosC=1-sin2C=1114.由c2=a2+b2-2abcosC,得b2-11b+24=0,解得b=3或b=8.当b=8时,角B是钝角,cosB=a2+c2-b22ac=49+25-642答案C2.设△ABC的内角A,B,C所对的边分别为a,b,c,且3acosC=4csinA,若△ABC的面积S=10,b=4,则a的值为(  )解析由3acosC=4csinA,得asinA=4c3cosC.又由正弦定理asinA=csinC,得csinC=4c3cosC,∴tanC=,∴答案B3.在△ABC中,ab=60,S△ABC=153,△ABC的外接圆半径为3,则边c的长为    .解析∵S△AB【阅读全文】
利来AG旗舰厅,利来AG旗舰厅,利来AG旗舰厅,利来AG旗舰厅,利来AG旗舰厅,利来AG旗舰厅
s7n | 2019-01-16 | 阅读(611) | 评论(562)
本届金鹰节还新增“中国文联终身成就电视艺术家”奖,文艺家李准、剧作家王朝柱获此殊荣。【阅读全文】
xj8 | 2019-01-16 | 阅读(437) | 评论(399)
这也是我国仅次于春节的第二大传统节日。【阅读全文】
q8g | 2019-01-16 | 阅读(27) | 评论(367)
然而,日美两国政府无视冲绳县民众的强烈反对,仍然决定将位于该县宜野湾市的普天间基地迁至该县名护市的边野古地区。【阅读全文】
du8 | 2019-01-16 | 阅读(831) | 评论(905)
2.决定因素:__________和死亡率。【阅读全文】
pmc | 2019-01-15 | 阅读(11) | 评论(224)
PAGE第3课时 三角形中的几何计算课后篇巩固探究A组1.在△ABC中,AB=2,BC=5,△ABC的面积为4,则cos∠ABC等于(  )                ±C.-D.±解析由S=AB·BC·sin∠ABC,得4=×2×5sin∠ABC,解得sin∠ABC=,从而cos∠ABC=±.答案B2.某市在“旧城改造”工程中计划在如图所示的一块三角形空地上种植草皮以美化环境.已知这种草皮的价格为a元/m2,则购买这种草皮需要(  )元元解析由已知可求得草皮的面积为S=×20×30sin150°=150(m2),则购买草皮的费用为150a元答案C3.在△ABC中,a,b,c分别为角A,B,C的对边,若2b=a+c,B=30°,△ABC的面积为,则b等于(  )+++3解析由acsin30°=,得ac=6.由余弦定理,得b2=a2+c2-2accos30°=(a+c)2-2ac-3ac=4b2-12-63答案A4.在△ABC中,若AC=3BC,C=π6,S△ABC=3sin2A,则S△ABC=(解析因为AB2=BC2+3BC2-2×BC×3BC×32=BC2,所以A=C=π6,所以S△ABC=3sin2A=答案A5.若△ABC的周长等于20,面积是103,B=60°,则边AC的长是(  )解析在△ABC中,设A,B,C的对边分别为a,b,c,已知B=60°,由题意,得cos60°=a2+c答案C6.已知△ABC的三边分别为a,b,c,且面积S=a2+b2解析在△ABC中,S△ABC=a2而S△ABC=absinC,∴a2+b由余弦定理,得c2=a2+b2-2abcosC,∴cosC=sinC,∴C=45°.答案45°7.已知三角形的面积为,其外接圆面积为π,则这个三角形的三边之积等于     .解析设三角形的外接圆半径为R,则由πR2=π,得R=1.由S=absinC=abc4R=abc答案18.在△ABC中,角A,B,C所对的边分别为a,b,c,求证:ab-b证明由余弦定理的推论得cosB=a2cosA=b2右边=ca=2a2故原式得证.9.如图,在△ABC中,BC=5,AC=4,cos∠CAD=3132,且AD=BD,求△ABC的面积解设CD=x,则AD=BD=5-x.在△CAD中,由余弦定理,得cos∠CAD=42+(5∴CD=1,AD=BD=4.在△CAD中,由正弦定理,得ADsin则sinC=ADCD·1-∴S△ABC=AC·BC·sinC=×4×5×387=154710.导学号04994016若△ABC的三边长分别为a,b,c,面积为S,且S=c2-(a-b)2,a+b=2,求面积S的最大值.解S=c2-(a-b)2=c2-a2-b2+2ab=2ab-(a2+b2-c2).由余弦定理,得a2+b2-c2=2abcosC,∴c2-(a-b)2=2ab(1-cosC),即S=2ab(1-cosC).∵S=absinC,∴sinC=4(1-cosC).又sin2C+cos2C=1,∴17cos2C-32cosC+解得cosC=1517或cosC=1(舍去)∴sinC=817∴S=absinC=417a(2-a)=-417(a-1)2+∵a+b=2,∴0a2,∴当a=1,b=1时,Smax=417B组1.在钝角三角形ABC中,内角A,B,C所对的边分别为a,b,c,已知a=7,c=5,sinC=5314,则△ABC的面积等于(解析在钝角三角形ABC中,∵a=7,c=5,sinC=5314,∴AC,C为锐角,且cosC=1-sin2C=1114.由c2=a2+b2-2abcosC,得b2-11b+24=0,解得b=3或b=8.当b=8时,角B是钝角,cosB=a2+c2-b22ac=49+25-642答案C2.设△ABC的内角A,B,C所对的边分别为a,b,c,且3acosC=4csinA,若△ABC的面积S=10,b=4,则a的值为(  )解析由3acosC=4csinA,得asinA=4c3cosC.又由正弦定理asinA=csinC,得csinC=4c3cosC,∴tanC=,∴答案B3.在△ABC中,ab=60,S△ABC=153,△ABC的外接圆半径为3,则边c的长为    .解析∵S△AB【阅读全文】
yzb | 2019-01-15 | 阅读(193) | 评论(470)
合格后发放《施工许可证》(2)装修管理及监督①与安管部门紧密配合对所有入场的装修材料检查,确保无装修工人私自带违规的材料入场,同时不定时的对入场装修人员核对,确保小区安全无事故。【阅读全文】
qmo | 2019-01-15 | 阅读(534) | 评论(576)
;;曹冲才7岁,就这么聪明,你还有其他更好的称象办法吗?找同学说一说,看看你们两个谁最聪明!;(1)曹冲的办法好吗?(2)如果现在让你们去称这头象的重量,你们有什么方法?①用人代替石头;②采用磅秤;③用小弹簧称象(杠杆原理);1、曹操听了摇头。【阅读全文】
利来AG旗舰厅,利来AG旗舰厅,利来AG旗舰厅,利来AG旗舰厅,利来AG旗舰厅,利来AG旗舰厅
xpa | 2019-01-15 | 阅读(7) | 评论(429)
X和Y染色体有一部分是同源的(图中Ⅰ区段),该部分存在等位基因;另一部分是非同源的(图中Ⅱ-1和Ⅱ-2区段),该部分不存在等位基因。【阅读全文】
w6m | 2019-01-14 | 阅读(881) | 评论(726)
佐边良和是冲绳县一名果农,几十年来一直以种植芒果为生。【阅读全文】
kr6 | 2019-01-14 | 阅读(174) | 评论(114)
双过贸易额由原来的100亿美元上升到2014年的2200亿美元。【阅读全文】
b7g | 2019-01-14 | 阅读(607) | 评论(111)
自二十世纪八十年代提出林纸结合以来,发展林业造纸,走林纸一体化道路己成为林业和纸业界的共识。【阅读全文】
gx7 | 2019-01-14 | 阅读(731) | 评论(455)
PAGE习题课——数列求和课后篇巩固探究A组1.已知数列{an}的前n项和为Sn,若an=1n(n+2),则                解析因为an=1n所以S5=a1+a2+a3+a4+a5=12答案D2.已知数列{an}的通项公式an=1n+n+1,若该数列的前k项之和等于9,则解析因为an=1n+n+1=n+1-n,所以其前n项和Sn=(2-1)+(3-2)+…+(n+1-n)答案A3.数列1,2,3,42716,…的前n项和为(  A.(n2+n-2)+(n+1)+1-3C.(n2-n+2)-(n+1)+31解析数列的前n项和为1++2++3++…+n+12×32n-1=(1+2+3+…+n)+12+34+98+…+1答案A4.已知{an}为等比数列,{bn}为等差数列,且b1=0,cn=an+bn,若数列{cn}是1,1,2,…,则数列{cn}的前10项和为(  )解析由题意可得a1=1,设数列{an}的公比为q,数列{bn}的公差为d,则q+d=1,q2+2d∵q≠0,∴q=2,d=-1.∴an=2n-1,bn=(n-1)(-1)=1-n,∴cn=2n-1+1-n.设数列{cn}的前n项和为Sn,则S10=20+0+21-1+…+29-9=(20+21+…+29)-(1+2+…+9)=1-2101-2-答案A5.已知数列{an}满足a1=1,a2=2,an+2=1+解析由题意可得a3=a1+1,a5=a3+1=a1+2,所以奇数项组成以公差为1,首项为1的等差数列,共有9项,因此S奇=9(1+9)2=45.偶数项a4=2a2,a6=2a4=22a2,因此偶数项组成以2为首项,2为公比的等比数列,共有9项,所以S偶=2(1-29)1-2答案D6.已知数列{an}的通项公式an=2n-12n,则其前n项和为解析数列{an}的前n项和Sn=2×1-12+2×2-122+…+2n-12n=2(1答案n2+n+12n7.数列112+3,1解析∵an=1n∴Sn=11=1=1118答案118.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列1a2n-1a解(1)设{an}的公差为d,则Sn=na1+n(由已知可得3解得a故{an}的通项公式为an=2-n.(2)由(1)知1a从而数列1a2nTn=1=n19.导学号04994055(2017·辽宁统考)已知等差数列{an}的公差为2,且a1,a1+a2,2(a1+a4)成等比数列.(1)求数列{an}的通项公式;(2)设数列an2n-1的前n项和为Sn,求证:(1)解∵{an}为等差数列,∴a2=a1+d=a1+2,a4=a1+3d=a1+6.∵a1,a1+a2,2(a1+a4)成等比数列,∴(a1+a2)2=2a1(a1+a4即(2a1+2)2=2a1(2a解得a1=1,∴an=1+2×(n-1)=2n-1.(2)证明由(1),知an∴Sn=120+321Sn=121+322①-②,得Sn=1+21=1+2×1=1+2-1=3-4=3-2n∴Sn=6-2n∵n∈N*,2n+3∴Sn=6-2n+32B组1.已知数列{an}的通项公式an=(-1)n-1n2,则其前n项和为(  )                A.(-1)n-1n(n+1)(n+1解析依题意Sn=12-22+32-42+…+(-1)n-1n2.当n为偶数时,Sn=12-22+32-42+…-n2=(12-22)+(32-42)+…+[(n-1)2-n2]=-[1+2+3+4+…+(n-1)+n]=-n(当n为奇数时,Sn=12-22+32-42+…-(n-1)2+n2=Sn-1+n∴Sn=(-1)n-1n(n+1答案A2.已知数列{an}为12,13+23,14+24++1解析∵an=1+2+3+…∴bn=1anan∴Sn=41=41-答案A3.已知Sn是数列{an}的前n项和,a1=1,a2=2,a3=3,数列{an+an+1+an+2}是公差为2的等差数列,则S25=(  )解析令bn=an+an+1+an+2,则b1=1+2+3=6,由题意知bn=6+2(n-1)=2【阅读全文】
ogg | 2019-01-13 | 阅读(591) | 评论(213)
北京时间2018年10月17日,Oracle官方发布了10月份的关键补丁(CPU,CriticalPatchUpdate),其中包含一个高危Weblogic反序列化漏洞(CVE-2018-3245)。【阅读全文】
ghe | 2019-01-13 | 阅读(379) | 评论(251)
(一)齐心协力,搞好所内建设疏散所位于美丽木兰湖畔,属市防办的“边疆”单位,在这里工作常【阅读全文】
共5页

友情链接,当前时间:2019-01-16

利来娱乐国际最给利老牌网站是什么 利来国际娱乐 w66.con www.w66.com 利来老牌
利来国际在钱服务 利来国际最老牌手机板 利来国际最给利的老牌最新 利来娱乐国际 利来国际AG旗舰厅
w66利来国际 利来娱乐国际 利来电游官方网站 利来国际最给利的老牌 利来娱乐账户
利来国际w66备用 利来国际官方网站 w66com 利来国际最给利的老牌 www.w66利来国际
保康县| 合肥市| 合山市| 弥勒县| 石渠县| 大竹县| 若羌县| 日土县| 峡江县| 温泉县| 太仆寺旗| 玛纳斯县| 新津县| 抚宁县| 德清县| 永平县| 师宗县| 永靖县| 甘谷县| 紫阳县| 上林县| 龙口市| 香河县| 巧家县| 林甸县| 大姚县| 镇巴县| 达拉特旗| 新龙县| 锦屏县| 昭苏县| 金川县| 广丰县| 兴宁市| 田阳县| 保山市| 高碑店市| 宁河县| 芒康县| 沙湾县| 连山| http://m.12038531.cn http://m.95045863.cn http://m.80591502.cn http://m.00393192.cn http://m.43030999.cn http://m.76263435.cn